EconPapers    
Economics at your fingertips  
 

On modelling and diagnostic checking of vector periodic autoregressive time series models

Eugen Ursu and Pierre Duchesne ()

Journal of Time Series Analysis, 2009, vol. 30, issue 1, 70-96

Abstract: Abstract. Vector periodic autoregressive time series models (PVAR) form an important class of time series for modelling data derived from climatology, hydrology, economics and electrical engineering, among others. In this article, we derive the asymptotic distributions of the least squares estimators of the model parameters in PVAR models, allowing the parameters in a given season to satisfy linear constraints. Residual autocorrelations from classical vector autoregressive and moving‐average models have been found useful for checking the adequacy of a particular model. In view of this, we obtain the asymptotic distribution of the residual autocovariance matrices in the class of PVAR models, and the asymptotic distribution of the residual autocorrelation matrices is given as a corollary. Portmanteau test statistics designed for diagnosing the adequacy of PVAR models are introduced and we study their asymptotic distributions. The proposed test statistics are illustrated in a small simulation study, and an application with bivariate quarterly West German data is presented.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2008.00601.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:30:y:2009:i:1:p:70-96

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:30:y:2009:i:1:p:70-96