Empirical likelihood intervals for conditional Value‐at‐Risk in ARCH/GARCH models
Yun Gong,
Zhouping Li and
Liang Peng
Journal of Time Series Analysis, 2010, vol. 31, issue 2, 65-75
Abstract:
Value‐at‐Risk (VaR) is a simple, but useful measure in risk management. When some volatility model is employed, conditional VaR is of importance. As autoregressive conditional heteroscedastic (ARCH) and generalized ARCH (GARCH) models are widely used in modelling volatilities, in this article, we propose empirical likelihood methods to obtain an interval estimation for the conditional VaR with the volatility model being an ARCH/GARCH model.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2009.00644.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:31:y:2010:i:2:p:65-75
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().