EconPapers    
Economics at your fingertips  
 

Hyper‐spherical and elliptical stochastic cycles

Alessandra Luati and Tommaso Proietti

Journal of Time Series Analysis, 2010, vol. 31, issue 3, 169-181

Abstract: A univariate first‐order stochastic cycle can be represented as an element of a bivariate first‐order vector autoregressive process, or VAR(1), where the transition matrix is associated with a rotation along a circle in the plane, and the reduced form is ARMA(2,1). This paper generalizes this representation in two directions. According to the first, the cyclical dynamics originate from the motion of a point along an ellipse. The reduced form is also ARMA(2,1), but the model can account for certain types of asymmetries. The second deals with the multivariate case: the cyclical dynamics result from the projection along one of the coordinate axis of a point moving in along an hyper‐sphere. This is described by a VAR(1) process whose transition matrix is obtained by a sequence of n‐dimensional Givens rotations. The reduced form of an element of the system is shown to be ARMA(n, n − 1). The properties of the resulting models are analysed in the frequency domain, and we show that this generalization can account for a multimodal spectral density. The illustrations show that the proposed generalizations can be fitted successfully to some well‐known case studies of the time series literature.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2010.00655.x

Related works:
Working Paper: Hyper-spherical and Elliptical Stochastic Cycles (2009) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:31:y:2010:i:3:p:169-181

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:jtsera:v:31:y:2010:i:3:p:169-181