Tests of strict stationarity based on quantile indicators
Fabio Busetti and
Andrew Harvey
Journal of Time Series Analysis, 2010, vol. 31, issue 6, 435-450
Abstract:
Quantiles provide a comprehensive description of the properties of a variable, and tracking changes in quantiles over time using signal extraction methods can be informative. It is shown here how departures from strict stationarity can be detected using stationarity tests based on weighted quantile indicators. Corresponding tests based on expectiles are also proposed; these might be expected to be more powerful for distributions that are not heavy‐tailed. Tests for changing dispersion and asymmetry may be based on contrasts between particular quantiles or expectiles. An overall test of the null hypothesis of strict stationarity can be constructed using the indicators from a range of quantiles. Residuals from fitting a time‐varying level or trend may be used to construct tests for relative time invariance. Empirical examples, using stock returns and US inflation, demonstrate the practical value of the tests.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2010.00676.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:31:y:2010:i:6:p:435-450
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().