Random effects mixture models for clustering electrical load series
Geoffrey Coke and
Min Tsao
Journal of Time Series Analysis, 2010, vol. 31, issue 6, 451-464
Abstract:
For purposes such as rate setting and long‐term capacity planning, electrical utility companies are interested in dividing their customers into homogeneous groups or clusters in terms of the customers’ electricity demand profiles. Such demand profiles are typically represented by load series, long time series of daily or even hourly rates of energy consumption of individual customers. The high dimension and time series nature inherent in the load series render existing methods of clustering analysis ineffective. To handle the high dimension and to take advantage of the time‐series nature of load series, we introduce a class of mixture models for time series, the random effects mixture models, which are particularly useful for clustering the load series. The random effects mixture models are based on a hierarchical model for individual components. They employ highly flexible antedependence models to effectively capture the time‐series characteristics of the covariance of the load series. We present details on the construction of such mixture models and discuss a special Expectation‐maximization (EM) algorithm for their computation. We also apply these models to cluster the data set which had motivated this research, a set of 923 load series from BC Hydro, a crown utility company in British Columbia, Canada.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2010.00677.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:31:y:2010:i:6:p:451-464
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().