SEMI-PARAMETRIC ESTIMATION OF LINEAR COINTEGRATING MODELS WITH NONLINEAR CONTEMPORANEOUS ENDOGENEITY
Yiguo Sun
Journal of Time Series Analysis, 2014, vol. 35, issue 5, 437-461
Abstract:
type="main" xml:id="jtsa12075-abs-0001"> This article considers linear cointegrating models with unknown nonlinear short-run contemporaneous endogeneity. Two estimators are proposed to estimate the linear cointegrating parameter after the nonlinear endogenous component is estimated by local linear regression approach. Both the proposed estimators are shown to have the same mixed normal limiting distribution with zero mean and smaller asymptotic variance than the fully modified ordinary least squares and instrumental variables estimators. Monte Carlo simulations are used to evaluate the finite sample performance of our proposed estimators, and an empirical application is also included.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12075 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:35:y:2014:i:5:p:437-461
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().