A PARAMETER-DRIVEN LOGIT REGRESSION MODEL FOR BINARY TIME SERIES
Rongning Wu and
Yunwei Cui
Journal of Time Series Analysis, 2014, vol. 35, issue 5, 462-477
Abstract:
type="main" xml:id="jtsa12076-abs-0001"> We consider a parameter-driven regression model for binary time series, where serial dependence is introduced by an autocorrelated latent process incorporated into the logit link function. Unlike in the case of parameter-driven Poisson log-linear or negative binomial logit regression model studied in the literature for time series of counts, generalized linear model (GLM) estimation of the regression coefficient vector, which suppresses the latent process and maximizes the corresponding pseudo-likelihood, cannot produce a consistent estimator. As a remedial measure, in this article, we propose a modified GLM estimation procedure and show that the resulting estimator is consistent and asymptotically normal. Moreover, we develop two procedures for estimating the asymptotic covariance matrix of the estimator and establish their consistency property. Simulation studies are conducted to evaluate the finite-sample performance of the proposed procedures. An empirical example is also presented.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12076 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:35:y:2014:i:5:p:462-477
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().