EconPapers    
Economics at your fingertips  
 

EFFICIENT METHOD OF MOMENTS ESTIMATORS FOR INTEGER TIME SERIES MODELS

Vance Martin, Andrew Tremayne and Robert C. Jung

Journal of Time Series Analysis, 2014, vol. 35, issue 6, 491-516

Abstract: type="main" xml:id="jtsa12078-abs-0001"> The parameters of integer autoregressive models with Poisson, or negative binomial innovations can be estimated by maximum likelihood where the prediction error decomposition, together with convolution methods, is used to write down the likelihood function. When a moving average component is introduced this is not the case. To address this problem an efficient method of moment estimator is proposed where the estimated standard errors for the parameters are obtained using subsampling methods. The small sample properties of the estimator are investigated using Monte Carlo methods, while the approach is demonstrated using two well-known examples from the time series literature.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12078 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:35:y:2014:i:6:p:491-516

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:jtsera:v:35:y:2014:i:6:p:491-516