NON-PARAMETRIC ESTIMATION OF HIGH-FREQUENCY SPOT VOLATILITY FOR BROWNIAN SEMIMARTINGALE WITH JUMPS
Chao Yu,
Yue Fang,
Zeng Li,
Bo Zhang and
Xujie Zhao
Journal of Time Series Analysis, 2014, vol. 35, issue 6, 572-591
Abstract:
type="main" xml:id="jtsa12082-abs-0001"> The availability of high-frequency financial data has led to substantial improvements in our understanding of financial volatility. Most existing literature focuses on estimating the integrated volatility over a fixed period. This article proposes a non-parametric threshold kernel method to estimate the time-dependent spot volatility and jumps when the underlying price process is governed by Brownian semimartingale with finite activity jumps. The threshold kernel estimator combines the threshold estimation for integrated volatility and the kernel filtering approach for spot volatility when the price process is driven only by diffusions without jumps. The estimator proposed is consistent and asymptotically normal and has the same rate of convergence as the estimator studied by Kristensen (2010) in a setting without jumps. The Monte Carlo simulation study shows that the proposed estimator exhibits excellent performance over a wide range of jump sizes and for different sampling frequencies. An empirical example is given to illustrate the potential applications of the proposed method.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12082 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:35:y:2014:i:6:p:572-591
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().