EconPapers    
Economics at your fingertips  
 

Simulation of Real Discrete Time Gaussian Multivariate Stationary Processes with Given Spectral Densities

M. Azimmohseni, A. R. Soltani and M. Khalafi

Journal of Time Series Analysis, 2015, vol. 36, issue 6, 783-796

Abstract: type="main" xml:id="jtsa12125-abs-0001"> In this article we establish a simulation procedure to generate values for a real discrete time multivariate stationary process, based on a factor of spectral density matrix. We prove the convergence of the simulator, at each time epoch, to the actual process, and provide the corresponding rate of convergence. We merely assume that the spectral density matrix is continuous and of bounded variation. By using the positive root factor, we provide an extended version for the Sun and Chaika ( ) simulator, for real univariate stationary processes.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12125 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:36:y:2015:i:6:p:783-796

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:36:y:2015:i:6:p:783-796