Simulation of Real Discrete Time Gaussian Multivariate Stationary Processes with Given Spectral Densities
M. Azimmohseni,
A. R. Soltani and
M. Khalafi
Journal of Time Series Analysis, 2015, vol. 36, issue 6, 783-796
Abstract:
type="main" xml:id="jtsa12125-abs-0001"> In this article we establish a simulation procedure to generate values for a real discrete time multivariate stationary process, based on a factor of spectral density matrix. We prove the convergence of the simulator, at each time epoch, to the actual process, and provide the corresponding rate of convergence. We merely assume that the spectral density matrix is continuous and of bounded variation. By using the positive root factor, we provide an extended version for the Sun and Chaika ( ) simulator, for real univariate stationary processes.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12125 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:36:y:2015:i:6:p:783-796
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().