A Gini Autocovariance Function for Time Series Modelling
Marcel Carcea and
Robert Serfling
Journal of Time Series Analysis, 2015, vol. 36, issue 6, 817-838
Abstract:
type="main" xml:id="jtsa12130-abs-0001"> In stationary time series modelling, the autocovariance function (ACV) through its associated autocorrelation function provides an appealing description of the dependence structure but presupposes finite second moments. Here, we provide an alternative, the Gini ACV, which captures some key features of the usual ACV while requiring only first moments. For fitting autoregressive, moving-average and autoregressive–moving-average models under just first-order assumptions, we derive equations based on the Gini ACV instead of the usual ACV. As another application, we treat a nonlinear autoregressive (Pareto) model allowing heavy tails and obtain via the Gini ACV an explicit correlational analysis in terms of model parameters, whereas the usual ACV even when defined is not available in explicit form. Finally, we formulate a sample Gini ACV that is straightforward to evaluate.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12130 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:36:y:2015:i:6:p:817-838
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().