A Nonparametric Model for Stationary Time Series
Isadora Antoniano-Villalobos and
Stephen G. Walker
Journal of Time Series Analysis, 2016, vol. 37, issue 1, 126-142
Abstract:
type="main" xml:id="jtsa12146-abs-0001"> Stationary processes are a natural choice as statistical models for time series data, owing to their good estimating properties. In practice, however, alternative models are often proposed that sacrifice stationarity in favour of the greater modelling flexibility required by many real-life applications. We present a family of time-homogeneous Markov processes with nonparametric stationary densities, which retain the desirable statistical properties for inference, while achieving substantial modelling flexibility, matching those achievable with certain non-stationary models. A latent extension of the model enables exact inference through a trans-dimensional Markov chain Monte Carlo method. Numerical illustrations are presented.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1111/jtsa.12146 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:37:y:2016:i:1:p:126-142
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().