Block Bootstrap for the Empirical Process of Long†Range Dependent Data
Johannes Tewes
Journal of Time Series Analysis, 2018, vol. 39, issue 1, 28-53
Abstract:
We consider the bootstrapped empirical process of long†range dependent data. It is shown that this process converges to a semi†degenerate limit, where the random part of this limit is always Gaussian. Thus the bootstrap might fail when the original empirical process accomplishes a noncentral limit theorem. However, even in this case our results can be used to estimate a nuisance parameter that appears in the limit of many nonparametric tests under long memory. Moreover, we develop a new resampling procedure for goodness†of†fit tests and a test for monotonicity of transformations.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12256
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:39:y:2018:i:1:p:28-53
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().