Testing Normality of Functional Time Series
Tomasz Górecki,
Siegfried Hörmann,
Lajos Horváth and
Piotr Kokoszka
Journal of Time Series Analysis, 2018, vol. 39, issue 4, 471-487
Abstract:
We develop tests of normality for time series of functions. The tests are related to the commonly used Jarque–Bera test. The assumption of normality has played an important role in many methodological and theoretical developments in the field of functional data analysis. Yet, no inferential procedures to verify it have been proposed so far, even for i.i.d. functions. We propose several approaches which handle two paramount challenges: (i) the unknown temporal dependence structure and (ii) the estimation of the optimal finite†dimensional projection space. We evaluate the tests via simulations and establish their large sample validity under general conditions. We obtain useful insights by applying them to pollution and intraday price curves. While the pollution curves can be treated as normal, the normality of high†frequency price curves is rejected.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12281
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:39:y:2018:i:4:p:471-487
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().