EconPapers    
Economics at your fingertips  
 

Boundary Limit Theory for Functional Local to Unity Regression

Anna Bykhovskaya and Peter Phillips

Journal of Time Series Analysis, 2018, vol. 39, issue 4, 523-562

Abstract: This article studies functional local unit root models (FLURs) in which the autoregressive coefficient may vary with time in the vicinity of unity. We extend conventional local to unity (LUR) models by allowing the localizing coefficient to be a function which characterizes departures from unity that may occur within the sample in both stationary and explosive directions. Such models enhance the flexibility of the LUR framework by including break point, trending, and multidirectional departures from unit autoregressive coefficients. We study the behavior of this model as the localizing function diverges, thereby determining the impact on the time series and on inference from the time series as the limits of the domain of definition of the autoregressive coefficient are approached. This boundary limit theory enables us to characterize the asymptotic form of power functions for associated unit root tests against functional alternatives. Both sequential and simultaneous limits (as the sample size and localizing coefficient diverge) are developed. We find that asymptotics for the process, the autoregressive estimate, and its t†statistic have boundary limit behavior that differs from standard limit theory in both explosive and stationary cases. Some novel features of the boundary limit theory are the presence of a segmented limit process for the time series in the stationary direction and a degenerate process in the explosive direction. These features have material implications for autoregressive estimation and inference which are examined in the article.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12285

Related works:
Working Paper: Boundary Limit Theory for Functional Local to Unity Regression (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:39:y:2018:i:4:p:523-562

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:jtsera:v:39:y:2018:i:4:p:523-562