EconPapers    
Economics at your fingertips  
 

Change‐Point Detection in Autoregressive Models with no Moment Assumptions

Fumiya Akashi, Holger Dette and Yan Liu

Journal of Time Series Analysis, 2018, vol. 39, issue 5, 763-786

Abstract: In this paper we consider the problem of detecting a change in the parameters of an autoregressive process where the moments of the innovation process do not necessarily exist. An empirical likelihood ratio test for the existence of a change point is proposed and its asymptotic properties are studied. In contrast to other works on change‐point tests using empirical likelihood, we do not assume knowledge of the location of the change point. In particular, we prove that the maximizer of the empirical likelihood is a consistent estimator for the parameters of the autoregressive model in the case of no change point and derive the limiting distribution of the corresponding test statistic under the null hypothesis. We also establish consistency of the new test. A nice feature of the method is the fact that the resulting test is asymptotically distribution‐free and does not require an estimate of the long‐run variance. The asymptotic properties of the test are investigated by means of a small simulation study, which demonstrates good finite‐sample properties of the proposed method.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12405

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:39:y:2018:i:5:p:763-786

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:39:y:2018:i:5:p:763-786