Quasi‐Bayesian Estimation of Time‐Varying Volatility in DSGE Models
Katerina Petrova
Journal of Time Series Analysis, 2019, vol. 40, issue 1, 151-157
Abstract:
We propose a novel quasi‐Bayesian Metropolis‐within‐Gibbs algorithm that can be used to estimate drifts in the shock volatilities of a linearized dynamic stochastic general equilibrium (DSGE) model. The resulting volatility estimates differ from the existing approaches in two ways. First, the time variation enters non‐parametrically, so that our approach ensures consistent estimation in a wide class of processes, thereby eliminating the need to specify the volatility law of motion and alleviating the risk of invalid inference due to mis‐specification. Second, the conditional quasi‐posterior of the drifting volatilities is available in closed form, which makes inference straightforward and simplifies existing algorithms. We apply our estimation procedure to a standard DSGE model and find that the estimated volatility paths are smoother compared to alternative stochastic volatility estimates. Moreover, we demonstrate that our procedure can deliver statistically significant improvements to the density forecasts of the DSGE model compared to alternative methods.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12290
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:40:y:2019:i:1:p:151-157
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().