Negative Binomial Autoregressive Process with Stochastic Intensity
Christian Gouriéroux and
Yang Lu
Journal of Time Series Analysis, 2019, vol. 40, issue 2, 225-247
Abstract:
We introduce negative binomial‐60 autoregressive (NBAR) processes with stochastic intensity for (univariate and bivariate) count processes. The univariate NBAR process is defined jointly with an underlying intensity process, which is autoregressive gamma. The resulting count process is Markov, with negative binomial conditional and marginal distributions. The process is then extended to the bivariate case with a Wishart autoregressive matrix intensity process. The NBAR processes are compound autoregressive, which allows for simple stationarity condition and quasi‐closed form nonlinear forecasting formulae at any horizon, as well as a computationally tractable generalized method of moment estimator. The model is applied to a pairwise analysis of weekly occurrence counts of a contagious disease between the greater Paris region and other French regions.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12441
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:40:y:2019:i:2:p:225-247
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().