EconPapers    
Economics at your fingertips  
 

Scalable inference for space‐time Gaussian Cox processes

Shinichiro Shirota and Sudipto Banerjee

Journal of Time Series Analysis, 2019, vol. 40, issue 3, 269-287

Abstract: The log‐Gaussian Cox process is a flexible and popular stochastic process for modeling point patterns exhibiting spatial and space‐time dependence. Model fitting requires approximation of stochastic integrals which is implemented through discretization over the domain of interest. With fine scale discretization, inference based on Markov chain Monte Carlo is computationally burdensome because of the cost of matrix decompositions and storage, such as the Cholesky, for high dimensional covariance matrices associated with latent Gaussian variables. This article addresses these computational bottlenecks by combining two recent developments: (i) a data augmentation strategy that has been proposed for space‐time Gaussian Cox processes that is based on exact Bayesian inference and does not require fine grid approximations for infinite dimensional integrals, and (ii) a recently developed family of sparsity‐inducing Gaussian processes, called nearest‐neighbor Gaussian processes, to avoid expensive matrix computations. Our inference is delivered within the fully model‐based Bayesian paradigm and does not sacrifice the richness of traditional log‐Gaussian Cox processes. We apply our method to crime event data in San Francisco and investigate the recovery of the intensity surface.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12457

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:40:y:2019:i:3:p:269-287

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:40:y:2019:i:3:p:269-287