A Structural‐Factor Approach to Modeling High‐Dimensional Time Series and Space‐Time Data
Zhaoxing Gao and
Ruey S. Tsay
Journal of Time Series Analysis, 2019, vol. 40, issue 3, 343-362
Abstract:
This article considers a structural‐factor approach to modeling high‐dimensional time series and space‐time data by decomposing individual series into trend, seasonal, and irregular components. For ease in analyzing many time series, we employ a time polynomial for the trend, a linear combination of trigonometric series for the seasonal component, and a new factor model for the irregular components. The new factor model simplifies the modeling process and achieves parsimony in parameterization. We propose a Bayesian information criterion to consistently select the order of the polynomial trend and the number of trigonometric functions, and use a test statistic to determine the number of common factors. The convergence rates for the estimators of the trend and seasonal components and the limiting distribution of the test statistic are established under the setting that the number of time series tends to infinity with the sample size, but at a slower rate. We study the finite‐sample performance of the proposed analysis via simulation, and analyze two real examples. The first example considers modeling weekly PM2.5 data of 15 monitoring stations in the southern region of Taiwan and the second example consists of monthly value‐weighted returns of 12 industrial portfolios.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12466
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:40:y:2019:i:3:p:343-362
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().