A Self‐Normalized Semi‐Parametric Test to Detect Changes in the Long Memory Parameter
Murad S. Taqqu and
Ting Zhang
Journal of Time Series Analysis, 2019, vol. 40, issue 4, 411-424
Abstract:
We consider the problem of testing for change points in the long memory parameter. The test relies on semi‐parametric estimation of the long memory parameter, which does not require the complete parametric specification of the whole spectrum. A self‐normalizer utilizing a sequence of recursive semi‐parametric estimators is used to make the asymptotic distribution of the test statistic free of the nuisance scale parameter. We study the asymptotic behavior of the proposed test for situations when there is at most one change point and also when there are an unknown number of change points. Monte Carlo simulations are carried out to examine the finite‐sample performance of the proposed test.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12444
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:40:y:2019:i:4:p:411-424
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().