EconPapers    
Economics at your fingertips  
 

Inference for the Lagged Cross‐Covariance Operator Between Functional Time Series

Gregory Rice and Marco Shum

Journal of Time Series Analysis, 2019, vol. 40, issue 5, 665-692

Abstract: When considering two or more time series of functional data objects, for instance those derived from densely observed intraday stock price data of several companies, the empirical cross‐covariance operator is of fundamental importance due to its role in functional lagged regression and exploratory data analysis. Despite its relevance, statistical procedures for measuring the significance of such estimators are currently undeveloped. We present methodology based on a functional central limit theorem for conducting statistical inference for the cross‐covariance operator estimated between two stationary, weakly dependent, functional time series. Specifically, we consider testing the null hypothesis that the two series possess a specified cross‐covariance structure at a given lag. Since this test assumes that the series are jointly stationary, we also develop a change‐point detection procedure to validate this assumption of independent interest. The most imposing technical hurdle in implementing the proposed tests involves estimating the spectrum of a high dimensional spectral density operator at frequency zero. We propose a simple dimension reduction procedure based on functional principal component analysis to achieve this, which is shown to perform well in a simulation study. We illustrate the proposed methodology with an application to densely observed intraday price data of stocks listed on the New York stock exchange‐20.40

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12447

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:40:y:2019:i:5:p:665-692

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:40:y:2019:i:5:p:665-692