Robustness of Zero Crossing Estimator
Yuichi Goto and
Masanobu Taniguchi
Journal of Time Series Analysis, 2019, vol. 40, issue 5, 815-830
Abstract:
Zero crossing (ZC) statistic is the number of zero crossings observed in a time series. The expected value of the ZC specifies the first‐order autocorrelation of the processes. Hence, we can estimate the autocorrelation by using the ZC estimator. The asymptotic consistency and normality of the ZC estimator for scalar Gaussian processes are already discussed in 1980. In this article, first, we derive the joint asymptotic distribution of the ZC estimator for ellipsoidal processes. Next, we show the variance of the ZC estimator does not attain the Cramer–Rao lower bound (CRLB). However, it is shown that the ZC estimator has robustness when the process is contaminated by an outlier. In contrast with this, we observe that the quasi‐maximum likelihood estimator (QMLE) attains the CRLB. However, we can see that QMLE is sensitive for the outlier.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12463
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:40:y:2019:i:5:p:815-830
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().