EconPapers    
Economics at your fingertips  
 

Self‐Weighted Lad‐Based Inference for Heavy‐Tailed Continuous Threshold Autoregressive Models

Yaxing Yang and Dong Li

Journal of Time Series Analysis, 2020, vol. 41, issue 1, 163-172

Abstract: This note investigates the self‐weighted least absolute deviation estimation (SLADE) of a heavy‐tailed continuous threshold autoregressive (TAR) model. It is shown that the SLADE is strongly consistent and asymptotically normal. The SLADE is global in the sense that the convergence rate is first obtained before deriving its limiting distribution. Moreover, a test for the continuity of TAR model is considered. A sign‐based portmanteau test is developed for diagnostic checking. An empirical example is given to illustrate the usefulness of our method. Combined with the results (Yang and Ling, 2017), a complete asymptotic theory on the SLADE of a heavy‐tailed TAR model is established. This enriches asymptotic theory of statistical inference in threshold models.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jtsa.12492

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:41:y:2020:i:1:p:163-172

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:41:y:2020:i:1:p:163-172