EconPapers    
Economics at your fingertips  
 

A Flexible Univariate Autoregressive Time‐Series Model for Dispersed Count Data

Kimberly F. Sellers, Stephen J. Peng and Ali Arab

Journal of Time Series Analysis, 2020, vol. 41, issue 3, 436-453

Abstract: Integer‐valued time series data have an ever‐increasing presence in various applications (e.g., the number of purchases made in response to a marketing strategy, or the number of employees at a business) and need to be analyzed properly. While a Poisson autoregressive (PAR) model would seem like a natural choice to model such data, it is constrained by the equi‐dispersion assumption (i.e., that the variance and the mean equal). Hence, data that are over‐ or under‐dispersed (i.e., have the variance greater or less than the mean respectively) are improperly modeled, resulting in biased estimates and inaccurate forecasts. This work instead develops a flexible integer‐valued autoregressive model for count data that contain over‐ or under‐dispersion. Using the Conway–Maxwell–Poisson (CMP) distribution and related distributions as motivation, we develop a first‐order sum‐of‐CMP's autoregressive (SCMPAR(1)) model that will instead offer a generalizable construct that captures the PAR, and versions of what we refer to as a negative binomial AR model, and binomial AR model respectively as special cases, and serve as an overarching representation connecting these three special cases through the dispersion parameter. We illustrate the SCMPAR model's flexibility and ability to effectively model count time series data containing data dispersion through simulated and real data examples.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12516

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:41:y:2020:i:3:p:436-453

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:41:y:2020:i:3:p:436-453