Testing equality of autocovariance operators for functional time series
Dimitrios Pilavakis,
Efstathios Paparoditis and
Theofanis Sapatinas
Journal of Time Series Analysis, 2020, vol. 41, issue 4, 571-589
Abstract:
We consider strictly stationary stochastic processes of Hilbert space‐valued random variables and focus on fully functional tests for the equality of the lag‐zero autocovariance operators of several independent functional time series. A moving block bootstrap (MBB)‐based testing procedure is proposed which generates pseudo random elements that satisfy the null hypothesis of interest. It is based on directly bootstrapping the time series of tensor products which overcomessome common difficulties associated with applications of the bootstrap to related testing problems. The suggested methodology can be potentially applied to a broad range of test statistics of the hypotheses of interest. As an example, we establish validity for approximating the distribution under the null of a test statistic based on the Hilbert–Schmidt distance of the corresponding sample lag‐zero autocovariance operators, and show consistency under the alternative. As a prerequisite, we prove a central limit theorem for the MBB procedure applied to the sample autocovariance operator which is of interest on its own. The finite sample size and power performance of the suggested MBB‐based testing procedure is illustrated through simulations and an application to a real‐life dataset is discussed.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12523
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:41:y:2020:i:4:p:571-589
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().