Tests for conditional heteroscedasticity of functional data
Gregory Rice,
Tony Wirjanto and
Yuqian Zhao
Journal of Time Series Analysis, 2020, vol. 41, issue 6, 733-758
Abstract:
Functional data objects derived from high‐frequency financial data often exhibit volatility clustering. Versions of functional generalized autoregressive conditionally heteroscedastic (FGARCH) models have recently been proposed to describe such data, however so far basic diagnostic tests for these models are not available. We propose two portmanteau type tests to measure conditional heteroscedasticity in the squares of asset return curves. A complete asymptotic theory is provided for each test. We also show how such tests can be adapted and applied to model residuals to evaluate adequacy, and inform order selection, of FGARCH models. Simulation results show that both tests have good size and power to detect conditional heteroscedasticity and model mis‐specification in finite samples. In an application, the tests show that intra‐day asset return curves exhibit conditional heteroscedasticity. This conditional heteroscedasticity cannot be explained by the magnitude of inter‐daily returns alone, but it can be adequately modeled by an FGARCH(1,1) model.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12532
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:41:y:2020:i:6:p:733-758
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().