EconPapers    
Economics at your fingertips  
 

Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data

Moizes Melo and Airlane Alencar

Journal of Time Series Analysis, 2020, vol. 41, issue 6, 830-857

Abstract: In this work, we propose a dynamic regression model based on the ConwayŮMaxwell–Poisson (CMP) distribution with time‐varying conditional mean depending on covariates and lagged observations. This new class of ConwayŮMaxwell–Poisson autoregressive moving average (CMP‐ARMA) models is suitable for the analysis of time series of counts. The CMP distribution is a two‐parameter generalization of the Poisson distribution that allows the modeling of underdispersed, equidispersed, and overdispersed data. Our main contribution is to combine this dispersion flexibility with the inclusion of lagged terms to model the conditional mean response, inducing an autocorrelation structure, usually relevant in time series. We present the conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis, and forecasting along with their asymptotic properties. In particular, we provide closed‐form expressions for the conditional score vector and conditional Fisher information matrix. We conduct a Monte Carlo experiment to evaluate the performance of the estimators in finite sample sizes. Finally, we illustrate the usefulness of the proposed model by exploring two empirical applications.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jtsa.12550

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:41:y:2020:i:6:p:830-857

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:41:y:2020:i:6:p:830-857