Mixtures of Nonlinear Poisson Autoregressions
Paul Doukhan,
Konstantinos Fokianos and
Joseph Rynkiewicz
Journal of Time Series Analysis, 2021, vol. 42, issue 1, 107-135
Abstract:
We study nonlinear infinite order Markov switching integer‐valued ARCH models for count time series data. Markov switching models take into account complex dynamics and can deal with several stylistic facts of count data including proper modelling of nonlinearities, overdispersion and outliers. We study structural properties of those models. Under mild conditions, we prove consistency and asymptotic normality of the maximum likelihood estimator for the case of finite order autoregression. In addition, we give conditions which imply that the marginal likelihood ratio test, for testing the number of regimes, converges to a Gaussian process. This result enables us to prove that the BIC provides a consistent estimator for selecting the true number of regimes. A real data example illustrates the methodology and compares this approach with alternative methods.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12558
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:1:p:107-135
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().