Robust discrimination between long‐range dependence and a change in mean
Carina Gerstenberger
Journal of Time Series Analysis, 2021, vol. 42, issue 1, 34-62
Abstract:
In this article we introduce a robust to outliers Wilcoxon change‐point testing procedure, for distinguishing between short‐range dependent time series with a change in mean at unknown time and stationary long‐range dependent time series. We establish the asymptotic distribution of the test statistic under the null hypothesis for L1 near epoch dependent processes and show its consistency under the alternative. The Wilcoxon‐type testing procedure similarly as the CUSUM‐type testing procedure (of Berkes I., Horváth L., Kokoszka P. and Shao Q. 2006. Ann.Statist. 34:1140–1165), requires estimation of the location of a possible change‐point, and then using pre‐ and post‐break subsamples to discriminate between short and long‐range dependence. A simulation study examines the empirical size and power of the Wilcoxon‐type testing procedure in standard cases and with disturbances by outliers. It shows that in standard cases the Wilcoxon‐type testing procedure behaves equally well as the CUSUM‐type testing procedure but outperforms it in presence of outliers. We also apply both testing procedure to hydrologic data.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12554
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:1:p:34-62
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().