EconPapers    
Economics at your fingertips  
 

Prediction of Singular VARs and an Application to Generalized Dynamic Factor Models

Siegfried Hörmann and Gilles Nisol

Journal of Time Series Analysis, 2021, vol. 42, issue 3, 295-313

Abstract: Vector autoregressive processes (VARs) with innovations having a singular covariance matrix (in short singular VARs) appear naturally in the context of dynamic factor models. Estimating such a VAR is problematic, because the solution of the corresponding equation systems is numerically unstable. For example, if we overestimate the order of the VAR, then the singularity of the innovations renders the Yule‐Walker equation system singular as well. We are going to show that this has a severe impact on accuracy of predictions. While the asymptotic rate of the mean square prediction error is not impacted by this problem, the finite sample behaviour is severely suffering. This effect will be reinforced, if the predictor variables are not coming from the stationary distribution of the process, but contain additional noise. Again, this happens to be the case in context of dynamic factor models. We will explain the reason for this phenomenon and show how to overcome the problem. Our numerical results underline that it is very important to adapt prediction algorithms accordingly.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12568

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:3:p:295-313

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:42:y:2021:i:3:p:295-313