Parsimonious time series modeling for high frequency climate data
Paul L. Anderson,
Farzad Sabzikar and
Mark M. Meerschaert
Journal of Time Series Analysis, 2021, vol. 42, issue 4, 442-470
Abstract:
Climate data often provides a periodically stationary time series, due to seasonal variations in the mean and covariance structure. Periodic ARMA models, where the parameters vary with the season, capture the nonstationary behavior. High frequency data collected weekly or daily results in a large number of model parameters. In this article, we apply discrete Fourier transforms to the parameter vectors, and develop a test for the statistically significant harmonics. An example of daily high temperatures illustrates the method, whereby a periodic autoregressive model with 1095 parameters is reduced to a parsimonious 12 parameter version without any apparent loss of fidelity.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12579
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:42:y:2021:i:4:p:442-470
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().