On the Relationship between Uhlig Extended and beta‐Bartlett Processes
Víctor Peña and
Kaoru Irie
Journal of Time Series Analysis, 2022, vol. 43, issue 1, 147-153
Abstract:
Stochastic volatility processes are used in multi‐variate time series analysis to track time‐varying patterns in covariance matrices. Uhlig extended (UE) and beta‐Bartlett (BB) processes are especially convenient for analyzing high‐dimensional time series because they are conjugate with Wishart likelihoods. In this article, we show that UE and BB are closely related, but not equivalent: their hyperparameters can be matched so that they have the same forward‐filtered posteriors and one‐step ahead forecasts, but different joint (smoothed) posterior distributions. Under this circumstance, Bayes factors cannot discriminate the models and alternative approaches to model comparison are needed. We illustrate these issues in a retrospective analysis of volatilities of returns of foreign exchange rates. Additionally, we provide a backward sampling algorithm for the BB process, for which retrospective analysis had not been developed.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12595
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:43:y:2022:i:1:p:147-153
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().