EconPapers    
Economics at your fingertips  
 

Periodic autoregressive conditional duration

Abdelhakim Aknouche, Bader Almohaimeed and Stefanos Dimitrakopoulos

Journal of Time Series Analysis, 2022, vol. 43, issue 1, 5-29

Abstract: We propose an autoregressive conditional duration (ACD) model with periodic time‐varying parameters and multiplicative error form. We name this model periodic autoregressive conditional duration (PACD). First, we study the stability properties and the moment structures of it. Second, we estimate the model parameters, using (profile and two‐stage) Gamma quasi‐maximum likelihood estimates (QMLEs), the asymptotic properties of which are examined under general regularity conditions. Our estimation method encompasses the exponential QMLE, as a particular case. The proposed methodology is illustrated with simulated data and two empirical applications on forecasting Bitcoin trading volume and realized volatility. We found that the PACD produces better in‐sample and out‐of‐sample forecasts than the standard ACD.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12588

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:43:y:2022:i:1:p:5-29

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:43:y:2022:i:1:p:5-29