Seasonal functional autoregressive models
Atefeh Zamani,
Hossein Haghbin,
Maryam Hashemi and
Rob Hyndman
Journal of Time Series Analysis, 2022, vol. 43, issue 2, 197-218
Abstract:
Functional autoregressive models are popular for functional time series analysis, but the standard formulation fails to address seasonal behaviour in functional time series data. To overcome this shortcoming, we introduce seasonal functional autoregressive time series models. For the model of order one, we derive sufficient stationarity conditions and limiting behaviour, and provide estimation and prediction methods. Moreover, we consider a portmanteau test for testing the adequacy of this model, and we derive its asymptotic distribution. The merits of this model are demonstrated using simulation studies and via an application to hourly pedestrian counts.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12608
Related works:
Working Paper: Seasonal Functional Autoregressive Models (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:43:y:2022:i:2:p:197-218
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().