EconPapers    
Economics at your fingertips  
 

Generalized binary vector autoregressive processes

Carsten Jentsch and Lena Reichmann

Journal of Time Series Analysis, 2022, vol. 43, issue 2, 285-311

Abstract: Vector‐valued‐60 extensions of univariate generalized binary auto‐regressive (gbAR) processes are proposed that enable the joint modeling of serial and cross‐sectional‐50 dependence of multi‐variate binary data. The resulting class of generalized binary vector auto‐regressive (gbVAR) models is parsimonious, nicely interpretable and allows also to model negative dependence. We provide stationarity conditions and derive moving‐average‐type representations that allow to prove geometric mixing properties. Furthermore, we derive general stochastic properties of gbVAR processes, including formulae for transition probabilities. In particular, classical Yule–Walker equations hold that facilitate parameter estimation in gbVAR models. In simulations, we investigate the estimation performance, and for illustration, we apply gbVAR models to particulate matter (PM10, ‘fine dust’) alarm data observed at six monitoring stations in Stuttgart, Germany.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jtsa.12614

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:43:y:2022:i:2:p:285-311

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:43:y:2022:i:2:p:285-311