Stationarity and ergodicity of Markov switching positive conditional mean models
Abdelhakim Aknouche and
Christian Francq
Journal of Time Series Analysis, 2022, vol. 43, issue 3, 436-459
Abstract:
A general Markov‐Switching autoregressive conditional mean model, valued in the set of non‐negative numbers, is considered. The conditional distribution of this model is a finite mixture of non‐negative distributions whose conditional mean follows a GARCH‐like dynamics with parameters depending on the state of a Markov chain. Three different variants of the model are examined depending on how the lagged‐values of the mixing variable are integrated into the conditional mean equation. The model includes, in particular, Markov mixture versions of various well‐known non‐negative time series models such as the autoregressive conditional duration model, the integer‐valued GARCH (INGARCH) model, and the Beta observation driven model. For the three variants of the model, conditions are given for the existence of a stationary and ergodic solution. The proposed conditions match those already known for Markov‐switching GARCH models. We also give conditions for finite marginal moments. Applications to various mixture and Markov mixture count, duration and proportion models are provided.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12621
Related works:
Working Paper: Stationarity and ergodicity of Markov switching positive conditional mean models (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:43:y:2022:i:3:p:436-459
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().