Autoregressive mixture models for clustering time series
Benny Ren and
Ian Barnett
Journal of Time Series Analysis, 2022, vol. 43, issue 6, 918-937
Abstract:
Clustering time series into similar groups can improve models by combining information across like time series. While there is a well developed body of literature for clustering of time series, these approaches tend to generate clusters independently of model training, which can lead to poor model fit. We propose a novel distributed approach that simultaneously clusters and fits autoregression models for groups of similar individuals. We apply a Wishart mixture model so as to cluster individuals while modelling the corresponding autocovariance matrices at the same time. The fitted Wishart scale matrices map to cluster‐level autoregressive coefficients through the Yule–Walker equations, fitting robust parsimonious autoregressive mixture models. This approach is able to discern differences in underlying autocorrelation variation of time series in settings with large heterogeneous datasets. We prove consistency of our cluster membership estimator, asymptotic distributions of coefficients and compare our approach against competing methods through simulation as well as by fitting a COVID‐19 forecast model.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/jtsa.12644
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:43:y:2022:i:6:p:918-937
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().