EconPapers    
Economics at your fingertips  
 

Wasserstein distance bounds on the normal approximation of empirical autocovariances and cross‐covariances under non‐stationarity and stationarity

Andreas Anastasiou and Tobias Kley

Journal of Time Series Analysis, 2024, vol. 45, issue 3, 361-375

Abstract: The autocovariance and cross‐covariance functions naturally appear in many time series procedures (e.g. autoregression or prediction). Under assumptions, empirical versions of the autocovariance and cross‐covariance are asymptotically normal with covariance structure depending on the second‐ and fourth‐order spectra. Under non‐restrictive assumptions, we derive a bound for the Wasserstein distance of the finite‐sample distribution of the estimator of the autocovariance and cross‐covariance to the Gaussian limit. An error of approximation to the second‐order moments of the estimator and an m‐dependent approximation are the key ingredients to obtain the bound. As a worked example, we discuss how to compute the bound for causal autoregressive processes of order 1 with different distributions for the innovations. To assess our result, we compare our bound to Wasserstein distances obtained via simulation.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jtsa.12716

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:45:y:2024:i:3:p:361-375

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:45:y:2024:i:3:p:361-375