Local Whittle estimation with (quasi‐)analytic wavelets
Sophie Achard and
Irène Gannaz
Journal of Time Series Analysis, 2024, vol. 45, issue 3, 421-443
Abstract:
In the general setting of long‐memory multivariate time series, the long‐memory characteristics are defined by two components. The long‐memory parameters describe the autocorrelation of each time series. And the long‐run covariance measures the coupling between time series, with general phase parameters. It is of interest to estimate the long‐memory, long‐run covariance and general phase parameters of time series generated by this wide class of models although they are not necessarily Gaussian nor stationary. This estimation is thus not directly possible using real wavelets decomposition or Fourier analysis. Our purpose is to define an inference approach based on a representation using quasi‐analytic wavelets. We first show that the covariance of the wavelet coefficients provides an adequate estimator of the covariance structure including the phase term. Consistent estimators based on a local Whittle approximation are then proposed. Simulations highlight a satisfactory behavior of the estimation on finite samples on multivariate fractional Brownian motions. An application on a real neuroscience dataset is presented, where long‐memory and brain connectivity are inferred.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12719
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:45:y:2024:i:3:p:421-443
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().