EconPapers    
Economics at your fingertips  
 

Local Whittle estimation with (quasi‐)analytic wavelets

Sophie Achard and Irène Gannaz

Journal of Time Series Analysis, 2024, vol. 45, issue 3, 421-443

Abstract: In the general setting of long‐memory multivariate time series, the long‐memory characteristics are defined by two components. The long‐memory parameters describe the autocorrelation of each time series. And the long‐run covariance measures the coupling between time series, with general phase parameters. It is of interest to estimate the long‐memory, long‐run covariance and general phase parameters of time series generated by this wide class of models although they are not necessarily Gaussian nor stationary. This estimation is thus not directly possible using real wavelets decomposition or Fourier analysis. Our purpose is to define an inference approach based on a representation using quasi‐analytic wavelets. We first show that the covariance of the wavelet coefficients provides an adequate estimator of the covariance structure including the phase term. Consistent estimators based on a local Whittle approximation are then proposed. Simulations highlight a satisfactory behavior of the estimation on finite samples on multivariate fractional Brownian motions. An application on a real neuroscience dataset is presented, where long‐memory and brain connectivity are inferred.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jtsa.12719

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:45:y:2024:i:3:p:421-443

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:45:y:2024:i:3:p:421-443