EconPapers    
Economics at your fingertips  
 

Granger causality tests based on reduced variable information

Neng‐Fang Tseng, Ying‐Chao Hung and Junji Nakano

Journal of Time Series Analysis, 2024, vol. 45, issue 3, 444-462

Abstract: Granger causality is a classical and important technique for measuring predictability from one group of time series to another by incorporating information of the variables described by a full vector autoregressive (VAR) process. However, in some applications economic forecasts need to be made based on information provided merely by a portion of variates (e.g., removal of a listed stock due to halting, suspension or delisting). This requires a new formulation of forecast based on an embedded subprocess of VAR, whose theoretical properties are often difficult to obtain. To avoid the issue of identifying the VAR subprocess, we propose a computation‐based approach so that sophisticated predictions can be made by utilizing a reduced variable information set estimated from sampled data. Such estimated information set allows us to develop a suitable statistical hypothesis testing procedure for characterizing all designated Granger causal relationships, as well as a useful graphical tool for presenting the causal structure over the prediction horizon. Finally, simulated data and a real example from the stock markets are used to illustrate the proposed method.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jtsa.12720

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:45:y:2024:i:3:p:444-462

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:45:y:2024:i:3:p:444-462