Transformed‐Linear Models for Time Series Extremes
Nehali Mhatre and
Daniel Cooley
Journal of Time Series Analysis, 2024, vol. 45, issue 5, 671-690
Abstract:
To capture the dependence in the upper tail of a time series, we develop non‐negative regularly varying time series models that are constructed similarly to classical non‐extreme ARMA models. Rather than fully characterizing tail dependence of the time series, we define the concept of weak tail stationarity which allows us to describe a regularly varying time series via a measure of pairwise extremal dependencies, the tail pairwise dependence function (TPDF). We state consistency requirements among the finite‐dimensional collections of the elements of a regularly varying time series and show that the TPDF's value does not depend on the dimension of the random vector being considered. So that our models take non‐negative values, we use transformed‐linear operations. We show existence and stationarity of these models, and develop their properties such as the model TPDFs. We fit models to hourly windspeed and daily fire weather index data, and we find that the fitted transformed‐linear models produce better estimates of upper tail quantities than a traditional ARMA model, classical linear regularly varying models, a max‐ARMA model, and a Markov model.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12732
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:45:y:2024:i:5:p:671-690
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().