Bootstrap prediction inference of nonlinear autoregressive models
Kejin Wu and
Dimitris N. Politis
Journal of Time Series Analysis, 2024, vol. 45, issue 5, 800-822
Abstract:
The nonlinear autoregressive (NLAR) model plays an important role in modeling and predicting time series. One‐step ahead prediction is straightforward using the NLAR model, but the multi‐step ahead prediction is cumbersome. For instance, iterating the one‐step ahead predictor is a convenient strategy for linear autoregressive (LAR) models, but it is suboptimal under NLAR. In this article, we first propose a simulation and/or bootstrap algorithm to construct optimal point predictors under an L1 or L2 loss criterion. In addition, we construct bootstrap prediction intervals in the multi‐step ahead prediction problem; in particular, we develop an asymptotically valid quantile prediction interval as well as a pertinent prediction interval for future values. To correct the undercoverage of prediction intervals with finite samples, we further employ predictive – as opposed to fitted – residuals in the bootstrap process. Simulation and empirical studies are also given to substantiate the finite sample performance of our methods.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12739
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:45:y:2024:i:5:p:800-822
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().