Testing covariance separability for continuous functional data
Holger Dette,
Gauthier Dierickx and
Tim Kutta
Journal of Time Series Analysis, 2025, vol. 46, issue 3, 402-420
Abstract:
Analyzing the covariance structure of data is a fundamental task of statistics. While this task is simple for low‐dimensional observations, it becomes challenging for more intricate objects, such as multi‐variate functions. Here, the covariance can be so complex that just saving a non‐parametric estimate is impractical and structural assumptions are necessary to tame the model. One popular assumption for space‐time data is separability of the covariance into purely spatial and temporal factors. In this article, we present a new test for separability in the context of dependent functional time series. While most of the related work studies functional data in a Hilbert space of square integrable functions, we model the observations as objects in the space of continuous functions equipped with the supremum norm. We argue that this (mathematically challenging) setup enhances interpretability for users and is more in line with practical preprocessing. Our test statistic measures the maximal deviation between the estimated covariance kernel and a separable approximation. Critical values are obtained by a non‐standard multiplier bootstrap for dependent data. We prove the statistical validity of our approach and demonstrate its practicability in a simulation study and a data example.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12764
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:46:y:2025:i:3:p:402-420
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().