Mixed orthogonality graphs for continuous‐time state space models and orthogonal projections
Vicky Fasen‐Hartmann and
Lea Schenk
Journal of Time Series Analysis, 2025, vol. 46, issue 4, 692-726
Abstract:
In this article, we derive (local) orthogonality graphs for the popular continuous‐time state space models, including in particular multivariate continuous‐time ARMA (MCARMA) processes. In these (local) orthogonality graphs, vertices represent the components of the process, directed edges between the vertices indicate causal influences and undirected edges indicate contemporaneous correlations between the component processes. We present sufficient criteria for state space models to satisfy the assumptions of Fasen‐Hartmann and Schenk (2024a) so that the (local) orthogonality graphs are well‐defined and various Markov properties hold. Both directed and undirected edges in these graphs are characterised by orthogonal projections on well‐defined linear spaces. To compute these orthogonal projections, we use the unique controller canonical form of a state space model, which exists under mild assumptions, to recover the input process from the output process. We are then able to derive some alternative representations of the output process and its highest derivative. Finally, we apply these representations to calculate the necessary orthogonal projections, which culminate in the characterisations of the edges in the (local) orthogonality graph. These characterisations are given by the parameters of the controller canonical form and the covariance matrix of the driving Lévy process.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12787
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:46:y:2025:i:4:p:692-726
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().