EconPapers    
Economics at your fingertips  
 

Mixed orthogonality graphs for continuous‐time state space models and orthogonal projections

Vicky Fasen‐Hartmann and Lea Schenk

Journal of Time Series Analysis, 2025, vol. 46, issue 4, 692-726

Abstract: In this article, we derive (local) orthogonality graphs for the popular continuous‐time state space models, including in particular multivariate continuous‐time ARMA (MCARMA) processes. In these (local) orthogonality graphs, vertices represent the components of the process, directed edges between the vertices indicate causal influences and undirected edges indicate contemporaneous correlations between the component processes. We present sufficient criteria for state space models to satisfy the assumptions of Fasen‐Hartmann and Schenk (2024a) so that the (local) orthogonality graphs are well‐defined and various Markov properties hold. Both directed and undirected edges in these graphs are characterised by orthogonal projections on well‐defined linear spaces. To compute these orthogonal projections, we use the unique controller canonical form of a state space model, which exists under mild assumptions, to recover the input process from the output process. We are then able to derive some alternative representations of the output process and its highest derivative. Finally, we apply these representations to calculate the necessary orthogonal projections, which culminate in the characterisations of the edges in the (local) orthogonality graph. These characterisations are given by the parameters of the controller canonical form and the covariance matrix of the driving Lévy process.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jtsa.12787

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:46:y:2025:i:4:p:692-726

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-07-02
Handle: RePEc:bla:jtsera:v:46:y:2025:i:4:p:692-726