Portfolio Optimization and Martingale Measures
Manfred Schäl
Mathematical Finance, 2000, vol. 10, issue 2, 289-303
Abstract:
The paper studies connections between risk aversion and martingale measures in a discrete‐time incomplete financial market. An investor is considered whose attitude toward risk is specified in terms of the index b of constant proportional risk aversion. Then dynamic portfolios are admissible if the terminal wealth is positive. It is assumed that the return (risk) processes are bounded. Sufficient (and nearly necessary) conditions are given for the existence of an optimal dynamic portfolio which chooses portfolios from the interior of the set of admissible portfolios. This property leads to an equivalent martingale measure defined through the optimal dynamic portfolio and the index 0
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9965.00095
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:10:y:2000:i:2:p:289-303
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().