Equilibrium Pricing in the Presence of Cumulative Dividends Following a Diffusion
Knut Aase
Mathematical Finance, 2002, vol. 12, issue 3, 173-198
Abstract:
The paper presents some security market pricing results in the setting of a security market equilibrium in continuous time. The theme of the paper is financial valuation theory when the primitive assets pay out real dividends represented by processes of unbounded variation. In continuous time, when the models are also continuous, this is the most general representation of real dividends, and it can be of practical interest to analyze such models. Taking as the starting point an extension to continuous time of the Lucas consumption‐based model, we derive the equilibrium short‐term interest rate, present a new derivation of the consumption‐based capital asset pricing model, demonstrate how equilibrium forward and futures prices can be derived, including several examples, and finally we derive the equilibrium price of a European call option in a situation where the underlying asset pays dividends according to an Itô process of unbounded variation. In the latter case we demonstrate how this pricing formula simplifies to known results in special cases, among them the famous Black–Scholes formula and the Merton formula for a special dividend rate process.
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://doi.org/10.1111/1467-9965.02006
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:12:y:2002:i:3:p:173-198
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().