Monte Carlo valuation of American options
L. C. G. Rogers
Mathematical Finance, 2002, vol. 12, issue 3, 271-286
Abstract:
This paper introduces a dual way to price American options, based on simulating the paths of the option payoff, and of a judiciously chosen Lagrangian martingale. Taking the pathwise maximum of the payoff less the martingale provides an upper bound for the price of the option, and this bound is sharp for the optimal choice of Lagrangian martingale. As a first exploration of this method, four examples are investigated numerically; the accuracy achieved with even very simple choices of Lagrangian martingale is surprising. The method also leads naturally to candidate hedging policies for the option, and estimates of the risk involved in using them.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (188)
Downloads: (external link)
https://doi.org/10.1111/1467-9965.02010
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:12:y:2002:i:3:p:271-286
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().