A Partially Observed Model for Micromovement of Asset Prices with Bayes Estimation via Filtering
Yong Zeng
Mathematical Finance, 2003, vol. 13, issue 3, 411-444
Abstract:
A general micromovement model that describes transactional price behavior is proposed. The model ties the sample characteristics of micromovement and macromovement in a consistent manner. An important feature of the model is that it can be transformed to a filtering problem with counting process observations. Consequently, the complete information of price and trading time is captured and then utilized in Bayes estimation via filtering for the parameters. The filtering equations are derived. A theorem on the convergence of conditional expectation of the model is proved. A consistent recursive algorithm is constructed via the Markov chain approximation method to compute the approximate posterior and then the Bayes estimates. A simplified model and its recursive algorithm are presented in detail. Simulations show that the computed Bayes estimates converge to their true values. The algorithm is applied to one month of intraday transaction prices for Microsoft and the Bayes estimates are obtained.
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.1111/1467-9965.t01-1-00022
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:13:y:2003:i:3:p:411-444
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().