Nonconvergence in the Variation of the Hedging Strategy of a European Call Option
R. Th. Peters
Mathematical Finance, 2003, vol. 13, issue 4, 467-480
Abstract:
In this paper we consider the variation of the hedging strategy of a European call option when the underlying asset follows a binomial tree. In a binomial tree model the hedging strategy of a European call option converges to a continuous process when the number of time points increases so that the price process of the underlying asset converges to a Brownian motion, the Bachelier model. However, the variation of the hedging strategy need not converge to the variation of the limit process. In fact, it is shown that the asymptotic variation of the hedging strategy may be of any order.
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9965.t01-1-00176
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:13:y:2003:i:4:p:467-480
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().